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Abstract

Partitioning equilibrium between bulk and slit-like pores in dilute solution was studied by Monte Carlo (MC) simulations on a cubic lattice
in the presence of attractive, polymer–pore interaction. Athermal chains with excluded volume of variable lengths were generated in a direct
simulation of the equilibrium partition coefficientK. The results show that by the variation of the polymer–pore adsorption energy,e , three
modes of liquid chromatography of polymers in good solvents can be reproduced. In contrast to ideal chains, the compensation point where
K� 1, relevant to critical chromatography, was found to be a function of the chain length. The attraction energy in the compensation pointe c

is independent of the slit width and can be identified with the critical energy of adsorption as well as with the adsorption theta point in infinite
chains. The counterbalance of steric exclusion (the depletion layer) and wall attraction (the enrichment layer) at the compensation point was
confirmed by a flat concentration profile across the pore. The distribution functions of the chain end-to-end distances perpendicular and
parallel to slit walls were calculated. It was inferred that in wide pores corresponding to size exclusion chromatography the partitioning
proceeds by the coil orientation, and, additionally, that the critical chromatography operates in the regime of weakly adsorbed chains
characterized by a diffuse adsorption layer.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The partitioning of macromolecular solutes between
small pores and bulk solution underlies various
chromatographic and membrane separation processes.
This phenomenon is characterised by the partition coeffi-
cient, K, which is the pore-to-bulk concentration ratio at
equilibrium. The behaviour of macromolecules in confining
geometries was recently reviewed by Teraoka [1]. Theore-
tical models of partitioning of flexible macromolecules were
focused on the pure steric exclusion in infinitely dilute
solutions. Owing to the repulsive interaction between a
macromolecule and the pore surface there is an entropy
cost for the polymers to enter the pore. The analytical
approach [2,3] based on the analogy between the diffusion
motion of a particle and the conformation of a freely jointed
ideal polymer chain provides the relations for the partition
coefficientK of the type

K , exp�2a1l
2� �1�

wherea1 is a numerical constant and the coil-to-pore size
ratiol can be expressed as a ratio of the gyration radius of a

chain Rg and a characteristic pore dimensiond, l � Rg/d.
The specific forms of Eq. (1) were derived for various
confining geometries such as slit, cylinder or sphere and
various chain architectures [1–4]. According to the relation
(1), the coefficientK depends on the molecule-to-pore size
ratio l only and not on each of these two parameters
taken separately. The steric excluded volume interaction
between a macromolecule and a pore is a dominant separa-
tion mechanism in the size exclusion chromatography
(SEC). The partition coefficientK in SEC of flexible poly-
mers decreases with increasing molecular size of
macromolecules.

The computer simulations were method of choice in
addressing the steric partitioning of various models of
chains and of the confinement geometry. The validity of
relation (1) was investigated for the freely jointed chains
of variable segment length [5] and for the ideal lattice chains
with an adsorbing boundary [6]. The partitioning of the
excluded volume chains into a cubic pore was studied by
MC simulations on a cubic lattice [7–10]. The comparison
[1] of the simulation data [9] with the analytical relation (1)
for a cubic pore shows that the excluded volume (athermal)
chains enter the restricting geometry more easily than the
Gaussian chains of the sameRg. In narrow pores the
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partitioning of the excluded volume chains was treated by a
scaling theory. For infinite chains in the slit-like and cylin-
drical pores the scaling theory [11] confirms the exponent
x� 2 in relation (1) for the theta solvent but in good
solvents the exponentx� 1.7 should be applied. In the
case of athermal chains of finite lengths, scaling arguments
were extended [4,12] to deduce the form of an additional
pre-exponential factor in relation (1). The concentration of
solute is an important variable in the steric partitioning
affecting considerably the form of the functionK vs l . An
analytical theory [1] and MC simulations [7–9,13] of ather-
mal chains were used to predict theK vs l curves in dilute
and semidilute solutions.

The steric partitioning and molecular separation is
substantially affected by attractive interaction between
macromolecules and pore walls. To address this problem,
the diffusion-equation partitioning theory [2,3] had to be
extended to include a short-range absorption potential and
the equation was solved for the various combinations of the
molecule-to-pore size ratiol and the adsorption strengthe .
The extensive development of this approach by Skvortsov
and Gorbunov is summarised in Ref. [4]. The partition coef-
ficient K(le) was predicted [4] for the ideal linear and
cyclic chains of variable flexibility in the various regimes
of narrow and wide pores. The continuum approximation of
Casassa was also extended [14] to account for other poly-
mer–pore potentials including the long-range electrostatic
interaction relevant for the polyelectrolyte partitioning.

The difference in the adsorption energy of solutes is
responsible for the separation in the “ideal” liquid adsorp-
tion chromatography (LAC); in contrast to SEC, here the
coefficientK increases with the increasing molecular mass
M of polymers. In real liquid chromatography (LC) of
macromolecules on porous carriers, the combined effect of
steric exclusion and adsorption mechanisms is operative.
The point whereK� 1 and attractive interaction of walls
counterbalances the polymer–pore exclusion is of particular
interest in the theory and in chromatographic practice. In the
compensation point the entropy losses due to the chain
confinement are fully compensated by the adsorption

enthalpy. The chromatography in the range close to the
compensation point is termed “critical chromatography”.
As at K� 1 the free energy of a chain in a pore and in
bulk is equal, the separation in a column becomes indepen-
dent of the molecular massM of solute. This gives the
possibility of selectively masking of the component(s) of
complex systems or making a part of a macromolecule (a
block in block copolymers) chromatographically invisible.
Experimental results confirm that the critical chromatogra-
phy is a versatile method suitable to exploit in separation the
difference in the chemical composition of macromolecules
(the polymer heterogeneity) in oligomers, block copoly-
mers, polymer blends, etc. [15–17].

The experimental data on the chromatographic separation
of polymers by changing the solvent or temperature can be
theoretically reproduced using the unified theory of the
polymer partitioning by steric exclusion and adsorption
[4,18,19]. As a special feature of fitting the chromatographic
data by a theory, the independence of the partition coeffi-
cient at the compensation pointK� 1 of the molecular mass
M was confirmed [18] for ideal chains by using the lattice
model [20] with a variable adsorption energye .

The existing analytical treatments of the exclusion–
adsorption compensation phenomenon [4,18] neglect the
intrachain excluded volume. As good solvents are
frequently used as a mobile phase in LC, we present in
this paper the first MC simulations of the steric exclusion
and adsorption partitioning of athermal chains into a slit-
like pore. The results did not confirm the existence of a
single compensation energye c predicted for ideal chains.
Instead, the compensation point was found to depend on the
chain length (or molar massM). Hence, in critical chroma-
tography in good solvents the steric exclusion/adsorption
compensation should occur within a narrow interval of
adsorption strengthse c.

2. The simulation model

Our simulation model is inspired by that of Wang and
Teraoka [13] in which we additionally included the poly-
mer–pore wall attractive interaction. Two boxes connected
to each other are assumed in simulations on a cubic lattice:
the box E, representing the exterior (bulk) phase and the box
I, representing the interior slit pore (Fig. 1). The box E has
the dimensions 50× 30× 50 (in lattice units) along thex, y
and z directions, respectively. In the box I of dimension
(D 1 1) × 30× 50 there are two solid walls atx� 1 and at
x� D 1 1 extending in they andzdirections and forming a
slit. The variableD is defined as a distance between the
lattice layers occupied by the walls and is measured in
lattice units. The polymer beads are not allowed to occupy
the sites on the walls. Periodic boundary conditions apply
with respect to all opposite walls in boxes except solid
walls.

Selfavoiding athermal walks of the variable lengthN up
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Fig. 1. A scheme of the simulation model.



to 200 beads (199 segments) in the chain were generated.
The simulations provide directly the equilibrium concentra-
tions of chains exchanging between bulk and a pore without
the necessity to calculate the free energy. Typically the
simulations started with two chains in the box E. Chains
were equilibrated using the reptation moves and the
Metropolis algorithm. The ratio of the volume fractions of
a polymer in the interior and exterior boxes at equilibrium,
f I/fE, gives the coefficientK. The chains in intermediate
positions with their parts located in both boxes E and I at
equilibrium contributed all their segments either to the
volume fractionf I or tofE, depending on where the major-
ity of chain segments along thez-axis is located. Up to
2 × 108 chain updates were used; the equilibration required
a very long time even for a dilute regime of few chains
because all sites in the bulk/pore space have to be sampled.

The short-range adsorption interaction was assumed
between the polymer segments and pore wall sites separated

by one lattice unit. The strength of the reduced attraction
energy per segmente � e 0=kT�e , 0� was a variable in the
simulation, together with the slit widthD and the chain
length N. Specifically, we concentrated on finding the
reduced adsorption energye c where the compensation
criterionK� 1 was satisfied.

For the chains confined in box I at equilibrium, the end-
to-end distribution functions perpendicular,W(R'), and
parallel, W(Rk), to the walls and the mean-square end-to-
end distancekR2l were calculated. The root-mean-square
radius of gyrationRg of free unconfined chains was also
determined.

3. Results and discussion

In the athermal system representing good solvents,
the volume exclusion of chain segments is secured by the
restrictions on the chain conformations imposed by the self-
avoiding walks on a lattice. Simulations were performed at
slit widths D� 12, 20 and 48. The coil-to-pore size ratio
l � 2Rg/D was between 0.2 and 1.1, covering fully the
region of wide pores and partially the region of narrow
pores of comparable sizes of a molecule and a pore. We
focused on the weakly adsorbed chains; the reduced adsorp-
tion strengthe was changed from 0 (steric partitioning) up
to 20.3. Variations of the reduced adsorption energy can be
interchanged with the variations of temperature.

The gradual change of the shape of the partitioning curve
K vs l with increasing adsorption attraction is shown in
Fig. 2 for the chain lengths between 20 and 100 segments.
As expected, the coefficientK decreases withl in the region
of prevailing steric exclusion. However, the partitioning
curves are shifted to higherl at ue u . 0, as if the pore
width effectively increased with increased attraction. It is
interesting that the analogous shifting of theK vs l curve
was observed by an increase in the polymer concentration at
pure steric partitioning [1,9]. At present there is no rigorous
theory available for the partitioning of linear flexible chains
with excluded volume in the presence of attractive poly-
mer–pore interaction. In the ideal chains in the slit-like
pores, the steric exclusion equivalent to curvee � 0 in
Fig. 2 would be described by Casassa’s [2,3] relation (1),
and the functionsK(l ,e ) derived by Skvortsov and Gorbu-
nov [4] would be applicable in the whole regime in Fig. 2
whereue u . 0.

The steric exclusion and adsorption effects in the parti-
tioning compensate in Fig. 2 fore around20.26, whereK is
close 1 and in wide pores,l , 0.5, independent ofl . The
plot of K as a function of attraction energy forN� 100 (Fig.
3) provides a more precise determination of the compensa-
tion point. From the intersection of this plot with the line
K� 1 for D� 20 the compensation energye c�20.2625
was determined.

Alternatively, the partitioning can be represented by the
dependence of the partition coefficientK on the chain length
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Fig. 2. Plot of the distribution coefficientK vs the ratiol � 2Rg/D for
various values of the adsorption energye .

Fig. 3. Plot of the distribution coefficientK as a function of the adsorption
energye for three slit widthsD� 12, 20 and 48.



N shown in Fig. 4 for slitD� 20 where the simulations of
the compensation region are presented in more detail. It is
clearly seen that the energye c in the compensation point
K� 1 depends slightly on the chain lengthN (or molar mass
M). For the chain lengths from 70 to 110 the value
e c�20.2625 is appropriate but in shorter chains the
adsorption still prevails (K . 1) at this value ofe c, while,
on the contrary, in longer chains the above adsorption
strength is not yet sufficient to fully counterbalance the
steric exclusion (K , 1). Thus, in contrast to a single
compensation point found in ideal chains [18], in athermal
chains the steric exclusion/adsorption compensation occurs
within a narrow interval of the adsorption strengthse c(N)
and by the extrapolation to infiniteN the “true” compensa-
tion energye c may be obtained.

In the ideal chains the steric excluded volume interaction
polymer–pore walls is counterbalanced atK� 1 by an
attraction polymer–pore walls. On the simple cubic lattice
this compensation occurs ate c�20.182 [4,18]. An inclu-
sion of the intrachain excluded volume into the free energy
of partitioning of athermal chains results in the chain-length
dependent compensation energye c(N). Moreover, the
compensation on a cubic lattice requires a more attractive
energy (e c�20.2625 at N about 100) for the larger,
expanded athermal chains than for ideal chains.

For athermal chains in narrow pores (atl . 1) the scaling
arguments [4,12] indicated already a possible dependence of
the compensation point on the chain length. The scaling
functions resembling relation (1) were extended to include
the pre-exponential factor and a proportionality was
deduced for the partition coefficient in the vicinity of the
compensation point,Kc t l x, with exponentx� 5/18 for a
slit-like pore. In order to compare the latter proportionality
with data in Fig. 4, the relation can be modified by an
introduction of the power lawRg t N0.6 valid in good
solvents. As a result, the functionKc t N1/6 is obtained,
i.e. the partition coefficient in the vicinity of the compensa-
tion point should weakly increase with the chain length.

However, the suggested scaling relation [4,12] is apparently
inconsistent with the data in Fig. 4 in the region of chain
lengthsN . 100.

The adsorption strength in the compensation pointe c

characterising the adsorption in a pore should be closely
related to the critical energy for adsorption of a polymer
on a single planar surface. In fact, in theoretical treatments
of the partitioning of ideal chains [4,18] these quantities
were identified. Lattice or off-lattice methods [20–22]
were frequently used to study the adsorption of flexible
polymers at an attractive planar surface and in the determi-
nation of the critical energy of adsorption. This adsorption
threshold is characterised by a narrow range of the surface
interactions where significant polymer adsorption occurs on
the surface. In infinite chains this adsorption transition
correspond to a sharp change from the three-dimensional
to quasi-bi-dimensional configurations of adsorbed chains
[22]. The results in Fig. 3 confirm that in the range of the
pore dimensions studied, the adsorption strength at the
compensation pointe c can also be in the athermal chains
identified with the critical adsorption energy on a single
planar surface. All three curvesK vs e in Fig. 3 for slits
differing in the width intersect at the same energye c. This
value is evidently determined by the adsorption on indivi-
dual walls independently, regardless of the distance of the
second wall in the slit. In other words, the same attractive
energy is needed, for chains to enter a pore and stay there at
the concentration corresponding toK� 1 in wide pores and
in narrow pores, in spite of the intuitively presumed large
difference in the steric exclusion between both types of
pores, which however applies only whene � 0. Conse-
quently, the chain-length dependence of the compensation
energye c(N) observed in Fig. 4 represents also the variation
of the critical energy of adsorption with the length of ather-
mal chains.

An interesting parallel exists between the all-included
polymer-surface interaction and the intrachain excluded
volume interaction in a solvent [23]. The compensation
pointK� 1, counterbalancing the steric exclusion repulsion
and adsorption attraction, can be considered in the limit of
infinite chains as the adsorption theta point where the poly-
mer–surface interaction vanishes. Such an identification is
in full analogy with the definition of the conventional theta
point for dilute polymer solutions. The concentration
profiles in a pore provide a transparent visualisation of
this compensation (see below). A close nature of both
types of the theta points is supported by a similarity in
respective attraction energies of segment–wall and
segment–segment interactions found in the simulations of
athermal chains. For a cubic lattice the above-mentioned
pore–wall critical energye c�20.2625 differs slightly
from the intersegmental interaction energyeu�20.2693
[24] which reproduces the properties of an unconfined
theta chain. The simulations [22] using the coarse-grained
off-lattice model provided yet another example of close values
of the respective pair of energies,ec�21.90 andeu�21.61.
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Fig. 4. Distribution coefficientK as a function of the chain lengthN for
various values of the adsorption energye .



Microscopic information on the chain confinement across
a pore can be obtained from the profiles of local concentra-
tions f I(x) at equilibrium in the layers parallel to the slit
(Fig. 5). The averaging of a profile over the span of slit gives
the mean intrapore concentrationf I. The depletion layers
on the walls due to steric exclusion of polymer segments are
seen on the curves in lower parts of Fig. 5(a)–(c). The wall
attraction causes an increase of the chain segment density in
the wall vicinity and a layer enriched by a polymer is formed
at more attractive adsorption strengths thane c. The increase
of the volume fractionf I and ofK with an increase in the
attraction strength shown in Figs. 2–4 originates in the
above mechanism of a gradual change from a depletion
layer to a enrichment layer. Both factors, the depletion
and enrichment are counterbalanced at the compensation

(or critical) energye c for a given chain length. In the
compensation point the concentration profiles in Fig.
5(a)–(c) are flat, i.e. the segment concentration is indepen-
dent of the distance from the pore walls. This unique feature
of the behaviour of confined chains, as if there were no
walls, is a graphic demonstration of the adsorption theta
state. The flat concentration profiles in the compensation
point were predicted in ideal chains [4], the inclusion of
the intrachain excluded volume makes the occurrence of
the flat concentration profiles dependent also on the chain
length.

In wide pores the wall confinement and wall attraction
effects are discernible up to the distancex about 15 lattice
units (Fig. 5(a)). The half of this distance,d , is called the
thickness of the depletion or adsorption layer [21]. As usual,
the thickness of the depletion layer is close to the coil radius
(Rg� 6.45 forN� 100). In the pore centre the volume frac-
tionf I(x) approaches the bulk concentrationfE. In pores of
intermediate width (D� 20), wherel � 0.645, both the
above mentioned effects extend up to the pore centre, but
the middle-pore concentrations are still close at the three
curves in Fig. 5(b). In a narrow pore where a molecule and a
pore have similar dimensions (l � 1.08), the confinement
effect is strong in the whole span of pore and the concentra-
tions in the profilef I(x) are much reduced (Fig. 5(c)) in
comparison with the related profiles in Fig. 5(a) and (b).
The pore centre concentration is similarly affected by the
wall attraction in a narrow pore; it implies that the thickness
of the adsorbed layer is comparable to the coil radius even at
e �20.3, i.e. at the attraction energy stronger than the
critical energy.

The confinement and adsorption interaction influence
also the chain linear dimensions. The end-to-end distribu-
tion functions perpendicular,W(R'), and parallel,W(Rk), to
the pore walls are shown in Fig. 6 as a function of the pore
width and of the attraction energy. The difference between
W(R') and W(Rk) gives information about the directional
anisotropy of coils caused by their deformation or reorienta-
tion in the confined geometry. It is apparent from the
comparison of Fig. 6(a) and (b) that the confinement geome-
try has much stronger influence on the chain anisotropy than
on the wall attraction, at least in the region of weak adsorp-
tion treated here. However, the overall chain dimensions
computed for the confined coils are only slightly affected
by the pore confinement: the mean-square end-to-end
distancekR2l is 228.4 and 237.6 in pore widthsD� 12
and 20, respectively. Hence, the observed enhancement of
the chain anisotropy by confinement should be caused
mainly by an increase of orientation of macromolecules. It
is well known that an instantaneous shape of a free uncon-
fined polymer coil resembles the form of a soap bar. The
ratio of the shape factors defined along three principal axes
of a coil depends on the solvent quality. The off-lattice
simulations of athermal chains [25] give the ratio
16.40:3.24:1, i.e. a pronounced coil anisotropy. The
principal axes of prolate elipsoids of unconfined chains
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Fig. 5. Variation of the volume fraction of a polymer withN� 100 in
individual layers parallel to the slit wallsf I(x) as a function of a distance
x across the pore for: (a)D� 48,l � 0.269; (b)D� 20,l � 0.645 and (c)
D� 12,l � 1.075.



are randomly oriented in a free space. However, in a slit, the
preferential alignment of long axes of chains parallel to the
pore walls [26,27] results in the difference between the
distributions W(R') and W(Rk). In addition, the chains
near the walls can also deform by flattening in a direction
parallel to the wall, even forming a nearly two-dimensional
structure in very narrow pores [27]. Apparently, the reduc-
tion of entropy by a steric confinement in a pore is caused
mainly by a loss in molecular orientational entropy and to a
less degree by a loss in the number of allowed chain confor-
mations. This reasoning is supported by the simulations [28]
of incompatible polymer mixtures where the polymer–poly-
mer interface resembles an impenetrable wall. The coils
were found to align parallel to the interface and the “true”
deformation of the intrinsic shape of coils was considered
negligible [28].

The above arguments about the dominance of the chain
orientation mechanism over the chain deformation near
planar walls referred to pure steric exclusion. Presumably,
they can be extended also to weakly adsorbed chains where
the alteration of the coil shape by adsorption interaction is
minimal. In fact, Fig. 6(b) shows that the increase in the wall
attraction brought only the minute increase of the coil aniso-
tropy given by the difference betweenW(R') andW(Rk). At
the same time the overall dimensions of confined chains
slightly increase with the absorption strength,kR2l is
227.2, 237.6, 244.3 fore � 0, 20.2625 and20.3, respec-

tively. In attractive pores of an intermediate size the
distributionW(R') has a broad shape and exhibits the high
number of conformations with end-to-end distances in thex
direction of 10 and more units (Fig. 6(a)). This is another
indication of a highly diffusional character of the adsorption
layers on the walls, with numerous segments extending far
to the pore centre and beyond. Even in a narrow, attractive
pore the distributionW(R') is rather broad and abruptly cut
as some of the chains evidently bridge the whole span of the
pore (Fig. 6(a)). This observations substantiate our belief
that the simulations cover the regime (including the
compensation point) of weakly adsorbed chains character-
ized by a few polymer–surface contacts and numerous loops
and tails. The adsorption transition into a compressed quasi-
two-dimensional adsorption layer, densely covering the
surface by forming the “train” sequences of adsorbed mono-
mers [21], occurs for finite chains at the adsorption strength
much higher than the critical adsorption energy [22].

4. Implications for critical chromatography and
conclusions

In liquid chromatography (LC) of polymers three modes
are exploited: size exclusion (SEC) and liquid adsorption
(LAC) chromatography and their combination in the vici-
nity of compensation point, variably denoted as critical
chromatography, liquid chromatography at the critical
point of adsorption, liquid chromatography at the point of
exclusion–adsorption transition, etc. [15–17]. Three LC
modes lead to the different functions of the partition coeffi-
cient K (proportional to the retention volumeVR) on the
molar massM. Our results show that all three LC modes
can be coherently described by the variation of the poly-
mer–pore adsorption energye for polymer chains expanded
in good solvents. In this way the simulations complement
the previous treatments [4,18] of the partition of ideal
chains. However, in application of simulations to LC, the
attraction energye should be redefined as the average
segment–substrate interaction energy in a given solvent
(mobile phase).

In critical chromatography in the vicinity ofK� 1
macromolecules of any molecular mass are eluted from
the column together with the low-molecular solvent, i.e.
macromolecules are chromatographically invisible. Experi-
mental results confirm that the critical chromatography is a
versatile method suitable to exploit in separation the differ-
ence in the chemical composition of macromolecules in
oligomers, block copolymers, polymer blends, etc.
[15–17]. Our results show that in contrast to the usually
presumed existence of a single universal compensation
point K� 1, in good solvents the compensation point
depends on the molar massM of the solute. In other
words, in LC of solutes differing inM, the steric
exclusion/adsorption compensation should occur within a
narrow interval of the adsorption strengthse c. Moreover,
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Fig. 6. Plot of the end-to-end distribution functions perpendicularW(R')
and parallelW(Rk) to the walls: (a) at the critical adsorption energy
e c�20.2625 in a slit of widths 12 and 20; (b) in the slitD� 20 for various
values of the adsorption energye .



the simulations predict that the compensation point (for a
givenM) is independent of the pore dimensions and thus, of
the pore size distribution of column packing.

The microstructural information obtained from simula-
tion indicate that the critical chromatography operates in
the regime of weakly adsorbed chains characterized by a
diffuse adsorption layer with a numerous loops and tails
extending deep to the pore interior. The separation in SEC
and in critical chromatography is enhanced in wide pores by
orientations of coils shaped as prolate elipsoids along the
pore walls. The deformation of an intrinsic shape of polymer
coils becomes important in narrow pores only.
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